МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СЕВЕРОМОРСКАЯ ШКОЛА ПОЛНОГО ДНЯ»

ПРИНЯТА

решением педагогического совета

МБОУ «Североморская школа полного дня»

Протокол №1 от 30.08.2019

УТВЕРЖДЕНА

приказом директора

МБОУ «Североморская школа полного дня»

№271 от 31.08.2019

РАБОЧАЯ ПРОГРАММА ПО УЧЕБНОМУ ПРЕДМЕТУ «ИНФОРМАТИКА»

ОСНОВНОЕ ОБЩЕЕ ОБРАЗОВАНИЕ

1. Планируемые результаты

Обучающиеся узнают:

- что такое компьютерная сеть; в чем различие между локальными и глобальными сетями;
- назначение основных технических и программных средств функционирования сетей: каналов связи, модемов, серверов, клиентов, протоколов;
- назначение основных видов услуг глобальных сетей: электронной почты, телеконференций, файловых архивов и др;
- что такое Интернет; какие возможности предоставляет пользователю Всемирная паутина WWW;
- что такое модель; в чем разница между натурной и информационной моделями;
- какие существуют формы представления информационных моделей (графические, табличные, вербальные, математические);
- что такое база данных (БД), система управления базами данных (СУБД), информационная система;
- что такое реляционная база данных, ее элементы (записи, поля, ключи); типы и форматы полей;
- структуру команд поиска и сортировки информации в базах данных;
- что такое логическая величина, логическое выражение;
- что такое логические операции, как они выполняются;
- что такое электронная таблица и табличный процессор;
- основные информационные единицы электронной таблицы: ячейки, строки, столбцы, блоки и способы их идентификации;
- какие типы данных заносятся в электронную таблицу; как табличный процессор работает с формулами;
- основные функции (математические, статистические), используемые при записи формул в электронную таблицу;
- графические возможности табличного процессора;
- что такое кибернетика; предмет и задачи этой науки;
- сущность кибернетической схемы управления с обратной связью; назначение прямой и обратной связи в этой схеме;
- что такое алгоритм управления; какова роль алгоритма в системах управления;
- в чем состоят основные свойства алгоритма;
- способы записи алгоритмов: блок-схемы, учебный алгоритмический язык;
- основные алгоритмические конструкции: следование, ветвление, цикл; структуры алгоритмов;
- назначение вспомогательных алгоритмов; технологии построения сложных алгоритмов: метод последовательной детализации и сборочный (библиотечный) метод;
- основные виды и типы величин;
- назначение языков программирования;
- что такое трансляция;

- назначение систем программирования;
- правила оформления программы на Паскале;
- правила представления данных и операторов на Паскале;
- последовательность выполнения программы в системе программирования;
- основные этапы развития средств работы с информацией в истории человеческого общества;
- историю способов записи чисел (систем счисления);
- основные этапы развития компьютерной техники (ЭВМ) и программного обеспечения:
- в чем состоит проблема информационной безопасности.

Обучающиеся научатся:

осуществлять обмен информацией с файл-сервером локальной сети или с рабочими станциями одноранговой сети

осуществлять прием/передачу электронной почты с помощью почтовой клиент- программы;

осуществлять просмотр Web-страниц с помощью браузера;

работать с одной из программ-архиваторов;

приводить примеры натурных и информационных моделей;

ориентироваться в таблично организованной информации;

описывать объект (процесс) в табличной форме для простых случаев;

открывать готовую БД в одной из СУБД реляционного типа;

организовывать поиск информации в БД;

редактировать содержимое полей БД;

сортировать записи в БД по ключу;

добавлять и удалять записи в БД;

создавать и заполнять однотабличную БД в среде СУБД;

открывать готовую электронную таблицу в одном из табличных процессоров; редактировать содержимое ячеек; осуществлять расчеты по готовой электронной таблице;

выполнять основные операции манипулирования с фрагментами электронной таблицы:

копирование, удаление, вставку, сортировку;

получать диаграммы с помощью графических средств табличного процессора;

создавать электронную таблицу для несложных расчетов;

при анализе простых ситуаций управления определять механизм прямой и обратной связи;

пользоваться языком блок-схем, понимать описания алгоритмов на учебном алгоритмическом языке;

выполнить трассировку алгоритма для известного исполнителя;

составлять линейные, ветвящиеся и циклические алгоритмы управления одним из учебных исполнителей;

выделять подзадачи; определять и использовать вспомогательные алгоритмы;

работать с готовой программой на одном из языков программирования высокого уровня;

составлять несложные линейные, ветвящиеся и циклические программы; составлять несложные программы обработки одномерных массивов; отлаживать и исполнять программы в системе программирования; регулировать свою информационную деятельность в соответствии с этическими и правовыми нормами общества.

2. Содержание учебного предмета

Информация и информационные процессы

Информация – одно из основных обобщающих понятий современной науки.

Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой, и информация как сведения, предназначенные для восприятия человеком.

Примеры данных: тексты, числа. Дискретность данных. Анализ данных.

Возможность описания непрерывных объектов и процессов с помощью дискретных данных.

Информационные процессы – процессы, связанные с хранением, преобразованием и передачей данных.

Компьютер – универсальное устройство обработки данных

Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.

Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).

Программное обеспечение компьютера.

Носители информации, используемые в ИКТ. История и перспективы развития.

Представление об объемах данных и скоростях доступа, характерных для различных

видов носителей. Носители информации в живой природе.

История и тенденции развития компьютеров, улучшение характеристик компьютеров. Суперкомпьютеры.

Физические ограничения на значения характеристик компьютеров.

Параллельные вычисления.

Техника безопасности и правила работы на компьютере.

Математические основы информатики

Тексты и кодирование

Символ. Алфавит – конечное множество символов. Текст – конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.

Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке.

Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.

Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите.

Двоичные коды с фиксированной длиной кодового слова. Разрядность кода – длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16, 32.

Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т.д.

Количество информации, содержащееся в сообщении.

Подход А.Н. Колмогорова к определению количества информации.

Зависимость количества кодовых комбинаций от разрядности кода. *Код ASCII*.

Кодировки кириллицы. Примеры кодирования букв национальных алфавитов.

Представление о стандарте Unicode. Таблицы кодировки с алфавитом, отличным от двоичного.

Искажение информации при передаче. Коды, исправляющие ошибки.

Возможность однозначного декодирования для кодов с различной длиной кодовых слов.

Дискретизация

Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.

Кодирование цвета. Цветовые модели. Модели RGB и CMYK. Модели HSB и CMY. Глубина кодирования. Знакомство с растровой и векторной графикой.

Кодирование звука. Разрядность и частота записи. Количество каналов записи.

Оценка количественных параметров, связанных с представлением и хранением

изображений и звуковых файлов.

Системы счисления

Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления.

Основание системы счисления. Алфавит (множество цифр) системы счисления.

Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.

Двоичная система счисления, запись целых чисел в пределах от 0 до 1024. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.

Восьмеричная и шестнадцатеричная системы счисления. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно.

Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Арифметические действия в системах счисления.

Элементы комбинаторики, теории множеств и математической логики

Расчет количества вариантов: формулы перемножения и сложения количества вариантов. Количество текстов данной длины в данном алфавите. Множество. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.

Высказывания. Простые и сложные высказывания. Диаграммы Эйлера-Венна.

Логические значения высказываний. Логические выражения. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизъюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.

Таблицы истинности. Построение таблиц истинности для логических выражений.

Логические операции следования (импликация) и равносильности

(эквивалентность). Свойства логических операций. Законы алгебры логики.

Использование таблиц истинности для доказательства законов алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.

Списки, графы, деревья Список. Первый элемент, последний элемент, предыдущий элемент, следующий элемент. Вставка, удаление и замена элемента.

Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина (источник) и конечная вершина (сток) в ориентированном графе.

Длина (вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длинами ребер).

Дерево. Корень, лист, вершина (узел). Предшествующая вершина, последующие вершины. Поддерево. Высота дерева. *Бинарное дерево*. *Генеалогическое дерево*.

Алгоритмы и элементы программирования

Исполнители и алгоритмы. Управление исполнителями

Исполнители. Состояния, возможные обстановки и система команд исполнителя;

команды-приказы и команды-запросы; отказ исполнителя. Необходимость формального

описания исполнителя. Ручное управление исполнителем.

Алгоритм как план управления исполнителем (исполнителями).

Алгоритмический язык (язык программирования) — формальный язык для записи алгоритмов. Программа — запись алгоритма на конкретном алгоритмическом языке.

Компьютер – автоматическое устройство, способное управлять по заранее составленной программе исполнителями, выполняющими команды. Программное управление самодвижущимся роботом.

Словесное описание алгоритмов. Описание алгоритма с помощью блок-схем.

Отличие словесного описания алгоритма, от описания на формальном алгоритмическом языке.

Системы программирования. Средства создания и выполнения программ.

Понятие об этапах разработки программ и приемах отладки программ.

Управление. Сигнал. Обратная связь. Примеры: компьютер и управляемый им исполнитель (в том числе робот); компьютер, получающий сигналы от цифровых датчиков в ходе наблюдений и экспериментов, и управляющий реальными (в том числе движущимися) устройствами.

Алгоритмические конструкции Конструкция «следование». Линейный алгоритм. Ограниченность линейных алгоритмов: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Конструкция «ветвление». Условный оператор: полная и неполная формы.

Выполнение и невыполнение условия (истинность и ложность высказывания).

Простые и составные условия. Запись составных условий.

Конструкция «повторения»: циклы с заданным числом повторений, с условием выполнения, с переменной цикла. Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.

Запись алгоритмических конструкций в выбранном языке программирования.

Примеры записи команд ветвления и повторения и других конструкций в различных алгоритмических языках.

Разработка алгоритмов и программ

Оператор присваивания. Представление о структурах данных.

Константы и переменные. Переменная: имя и значение. Типы переменных: целые, вещественные, символьные, строковые, логические. Табличные величины (массивы).

Одномерные массивы. Двумерные массивы.

Примеры задач обработки данных:

нахождение минимального и максимального числа из двух, трех, четырех данных чисел;

нахождение всех корней заданного квадратного уравнения;

заполнение числового массива в соответствии с формулой или путем ввода чисел;

нахождение суммы элементов данной конечной числовой последовательности или

массива;

нахождение минимального (максимального) элемента массива.

Знакомство с алгоритмами решения этих задач. Реализации этих алгоритмов в выбранной среде программирования.

Составление алгоритмов и программ по управлению исполнителями Робот, Черепашка, Чертежник и др.

Знакомство с постановками более сложных задач обработки данных и

алгоритмами их решения: сортировка массива, выполнение поэлементных операций с массивами; обработка целых чисел, представленных записями в десятичной и двоичной системах счисления, нахождение наибольшего общего делителя (алгоритм Евклида).

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Простейшие приемы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод).

Знакомство с документированием программ. Составление описание программы по образцу.

Анализ алгоритмов

Сложность вычисления: количество выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Примеры коротких программ, выполняющих много шагов по обработке небольшого объема данных; примеры коротких программ, выполняющих обработку большого объема данных.

Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату. Примеры описания объектов и процессов с помощью набора числовых характеристик, а также зависимостей между этими характеристиками, выражаемыми спомощью формул.

Робототехника

Робототехника – наука о разработке и использовании автоматизированных технических систем. Автономные роботы и автоматизированные комплексы. Микроконтроллер. Сигнал. Обратная связь: получение сигналов от цифровых датчиков (касания, расстояния, света, звука и др.

Примеры роботизированных систем (система управления движением в транспортной системе, сварочная линия автозавода, автоматизированное управление отопления дома, автономная система управления транспортным средством и т.п.).

Автономные движущиеся роботы. Исполнительные устройства, датчики. Система команд робота. Конструирование робота. Моделирование робота парой: исполнитель команд и устройство управления. Ручное и программное управление роботами.

Пример учебной среды разработки программ управления движущимися роботами. Алгоритмы управления движущимися роботами. Реализация алгоритмов "движение до препятствия", "следование вдоль линии" и т.п.

Анализ алгоритмов действий роботов. Испытание механизма робота, отладка программы управления роботом Влияние ошибок измерений и вычислений на выполнение алгоритмов управления роботом.

Математическое моделирование

Понятие математической модели. Задачи, решаемые с помощью математического (компьютерного) моделирования. Отличие математической

модели от натурной модели и от словесного (литературного) описания объекта. Использование компьютеров при работе с математическими моделями.

Компьютерные эксперименты.

Примеры использования математических (компьютерных) моделей при решении научно-технических задач. Представление о цикле моделирования: построение математической модели, ее программная реализация, проверка на простых примерах (тестирование), проведение компьютерного эксперимента, анализ его результатов, уточнение модели.

Использование программных систем и сервисов

Файловая система

Принципы построения файловых систем. Каталог (директория). Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление. Типы файлов.

Характерные размеры файлов различных типов (страница печатного текста, полный текст романа «Евгений Онегин», минутный видеоклип, полуторачасовой фильм, файл данных космических наблюдений, файл промежуточных данных при математическом моделировании сложных физических процессов и др.).

Архивирование и разархивирование.

Файловый менеджер.

Поиск в файловой системе.

Подготовка текстов и демонстрационных материалов

Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ).

Текстовый процессор — инструмент создания, редактирования и форматирования текстов. Свойства страницы, абзаца, символа. Стилевое форматирование.

Включение в текстовый документ списков, таблиц, и графических объектов.

Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок и др. История изменений.

Проверка правописания, словари.

Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Понятие о системе стандартов по информации, библиотечному и издательскому делу. Деловая переписка, учебная публикация, коллективная работа. Реферат и аннотация.

Подготовка компьютерных презентаций. Включение в презентацию аудиовизуальных объектов.

Знакомство с графическими редакторами. Операции редактирования графических объектов: изменение размера, сжатие изображения; обрезка, поворот, отражение, работа с областями (выделение, копирование, заливка цветом), коррекция цвета, яркости и

контрастности. Знакомство с обработкой фотографий. Геометрические и стилевые преобразования.

Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т. д.).

Средства компьютерного проектирования. Чертежи и работа с ними. Базовые операции: выделение, объединение, геометрические преобразования фрагментов и компонентов. Диаграммы, планы, карты.

Электронные (динамические) таблицы

Электронные (динамические) таблицы. Формулы с использованием абсолютной, относительной и смешанной адресации; преобразование формул при копировании.

Выделение диапазона таблицы и упорядочивание (сортировка) его элементов; построение графиков и диаграмм.

Базы данных. Поиск информации

Базы данных. Таблица как представление отношения. Поиск данных в готовой базе. Связи между таблицами.

Поиск информации в сети Интернет. Средства и методика поиска информации.

Построение запросов; браузеры. Компьютерные энциклопедии и словари.

Компьютерные карты и другие справочные системы. Поисковые машины.

Работа в информационном пространстве. Информационно-

коммуникационные технологии

Компьютерные сети. Интернет. Адресация в сети Интернет. Доменная система имен. Сайт. Сетевое хранение данных. Большие данные в природе и технике (геномные данные, результаты физических экспериментов, Интернет-данные, в частности, данные

социальных сетей). Технологии их обработки и хранения.

Виды деятельности в сети Интернет. Интернет-сервисы: почтовая служба; справочные службы (карты, расписания и т. п.), поисковые службы, службы обновления программного обеспечения и др.

Компьютерные вирусы и другие вредоносные программы; защита от них.

Приемы, повышающие безопасность работы в сети Интернет. Проблема

подлинности полученной информации. Электронная подпись, сертифицированные сайты и документы. Методы индивидуального и коллективного размещения новой информации в сети Интернет. Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция и др.

Гигиенические, эргономические и технические условия эксплуатации средств ИКТ. Экономические, правовые и этические аспекты их использования. Личная информация, средства ее защиты. Организация личного информационного пространства.

Основные этапы и тенденции развития ИКТ. Стандарты в сфере информатики и ИКТ. Стандартизация и стандарты в сфере информатики и ИКТ докомпьютерной эры (запись чисел, алфавитов национальных языков и др.) и компьютерной эры (языки программирования, адресация в сети Интернет и др.).

3. Тематическое планирование

Учебно-тематический план

N₂	Название темы	Количество часов		
712		общее	теория	практика
1	Информация и информационные	9	6	3
	процессы			
2	Компьютер как универсальное	7	4	3
	устройство обработки информации			
3	Обработка графической информации	4	2	2
4	Обработка текстовой информации	9	3	6
5	Мультимедиа	4	1	3
6	Математические основы информатики	13	10	3
7	Основы алгоритмизации	10	6	4
8	Начала программирования	10	2	8
9	Моделирование и формализация	9	6	3
10	Алгоритмизация и программирование	8	2	6
11	Обработка числовой информации	6	2	4
12	Коммуникационные технологии	10	6	4
	Резерв	3	0	3
	Итого:	102	50	52

Тематическое планирование

на основе учебно-методического комплекта по информатике для основной школы (авторы Л.Л. Босова, А.Ю. Босова; издательство «БИНОМ. Лаборатория знаний»).

7 класс

Тема 1. Информация и информационные процессы (9					
час.)					
Тема 2. Компьютер как универсальное устройство для					
работы с информацией (7 час.)					
Тема 3. Обработка графической информации (4 час.)					
Тема 4. Обработка текстовой информации (9 час.)					
Тема 5. Мультимедиа (4 час.)					
Итоговое повторение (1 час.)					

Тематическое планирование

на основе учебно-методического комплекта по информатике для основной школы (авторы Л.Л. Босова, А.Ю. Босова; издательство «БИНОМ. Лаборатория знаний»).

8 класс

Тема 1. Математические основы информатики (13 час.)				
Тема 2. Основы алгоритмизации (10 час.)				
Тема 3. Начала программирования (10 час.)				
Итоговое повторение (1 час.)				

Тематическое планирование

на основе учебно-методического комплекта по информатике для основной школы (авторы Л.Л. Босова, А.Ю. Босова; издательство «БИНОМ. Лаборатория знаний»).

9 класс

Тема 1. Моделирование и формализация (9 час.)			
Тема 2. Алгоритмизация и программирование (8 час.)			
Тема 3. Обработка числовой информации (6 час.)			
Тема 4. Коммуникационные технологии (10 час.)			
Итоговое повторение (1 час.)			